THIN ASPHALT OVERLAYS FOR PAVEMENT PRESERVATION

Acknowledgement

Kent Hansen, P.E. Director of Engineering National Asphalt Pavement Association

Matthew Corrigan Federal Highway Administration

Why Thin Asphalt Overlays?

- Shift from new construction to renewal and preservation
- Functional improvements for safety and smoothness needed more than structural improvements – Perpetual Pavements

Material improvements

- Binders Superpave and Polymers
- SMA, OGFC, Ultra-Thin Bonded and Dense-Graded
- Superpave mix design
- Warm Mix
- Reclaimed Asphalt Pavement (RAP)
- Roofing Shingles

Thin Asphalt Overlays are Popular

Benefits of Thin Asphalt Overlays

- Long service, low lifecycle cost
- Maintain grade and slope
- Handles heavy traffic
- Smooth surface
- Seal the surface
- No loose stones
- Minimize dust

Minimize traffic delays

- No curing time
- Low noise generation
- No binder runoff
- Can be recycled
- Can use in stage construction
- Easy to maintain
- Restore skid resistance

Topics

- Project Selection
- Materials Selection and Mix Design
- Construction and Quality Control
- Performance
- Conclusions

Project Selection

Avoid Projects Needing Structural Rehabilitation!!

Basic Evaluation

- Visual Survey
- Structural Assessment
 - No structural improvement required
- Drainage Evaluation
 - What changes are needed
- Functional Evaluation
 - Ride quality
 - Skid resistance
- Discussion with Maintenance Personnel

Visual Survey

- Part of a good Pavement Management System.
- Get good, current projectspecific data
- Need to know:
 - Type of distress
 - Extent
 - Severity
- Visit the site and validate
 data.

Types of Distress

Raveling

- Longitudinal Cracking (not in wheelpath)
- Longitudinal Cracking (in wheelpath)
- Transverse Cracking
- Alligator Cracking
- Rutting

Raveling

FP²

Longitudinal Cracking (not in wheelpath)

Longitudinal Cracking (wheelpath)

Temporary Fix for Minor Distress

Transverse Cracking

Alligator (Fatigue) Cracking

Temporary Fix for Minor Distress

Rutting or Shoving

Surface Failure – Milling Required

Severe Structural Failure

Ride Quality and Skid Resistance

Rough Surfaces Should be Milled

Skid Problems can be Milled, but not Required

Noise can be Reduced

NCAT Noise Trailer

Noise Level, dB(A)

Drainage Evaluation

Information Series 128

U.S. Department of Transportation Federal Highway Administration

NATIONAL ASPHALT PAVEMENT ASSOCIATION

HIMA Pavement Mix Type Selection Guide

Π

If a Thin Overlay is the Answer...

Select

- Surface Preparation
 - Distresses
 - Roughness
 - Considerations for Curb Reveal and Drainage
- Materials
 - Traffic
 - Availability
 - Climate
- Thickness
 - NMAS
 - Geometrics

Surface Preparation

	Mill	Fill Cracks with Mix	Clean and <u>Tack</u>	
Raveling			~	
Long. Crack – not in w.p.	*	*		
Long. Crack - w.p.	*	~	\checkmark	
Transverse Crack	<	\checkmark	\checkmark	
Alligator Crack	~		\checkmark	
Rutting	\checkmark		\checkmark	

NATIONAL ASPHALT PAVEMENT ASSOCIATION

Materials & Mi

 Materials Selection
 Mix Design for Dense-Graded Mixes
 Other Mix Types

Materials Selection – Aggregate

- Thin overlays need small NMAS
 - Thin overlays < 1.5 inches thick</p>
 - Aggregate size between 4.75 and 12.5 mm NMAS
 - Ratio of lift thickness to NMAS range 3:1 to 5:1
- Quality
 - LA Abrasion: 35-48 maximum
 - Sodium Sulfate: 10-16 maximum
 - CA Fractured Faces (does not apply to 4.75 mm)
 - 2 or More: 80-90
 - 1: 10-100
 - Sand Equivalent: 28-60
 - FA Angularity (Un-compacted Voids): 40-45

Example Gradations

Materials Selection - Binder

- Most specifications use PG system for climate and traffic
 - Minnesota Unmodified binder
 - Ohio Polymer modified PG 76-22
 - New Jersey PG 76-22 for high performance mix, AR used
 - North Carolina depends upon traffic level

Materials Selection - RAP

- Small NMAS mixes should contain fine RAP
- RAP or shingles will help
 - Stabilize cost by reducing added asphalt and added aggregate
 - Prevent rutting
 - Prevent scuffing
- Use maximum allowable while maintaining gradation and volumetrics

Mix Design

- Laboratory Compaction
 - Low Volume 50 gyrations in MD and GA
 - Medium Volume 60 to 75 in MD, NY, AL
 - High Volume 60 (AL) to 125 (UT)
 - Needs to be enough for interlock without fracturing aggregate
- Volumetrics
 - Void Requirements Mixes are relatively impermeable
 - VMA Should increase as NMAS decreases
 - Asphalt Content Should depend on Voids and VMA

Mix Design Requirements

NMAS	12.5 1	mm	9.5 :	mm	6.3 mm		4.75 mm	
State	AL	NC	NV	UT	NY	MD	GA	OH
Comp. Level	60			50-125	75	50/65	50	50/75
Design Voids			3-6	3.5	4.0	4.0	4.0-7.0	3.5
% VMA	15.5 min		12-22		16 min			15 min
% VFA				70-80	70-78		50-80	
% AC	5.5 min	4.6-5.6				5.0-8.0	6.0-7.5	6.4 min

Permeability

Construction & Quality Control

Construction
 Production
 Paving
 Quality Control

Aggregate

- Proper stockpiles
 - Slope and Pave
 - Cover, if needed
- Moisture content
- Plant operations
 - Slower because
 - More time to coat
 - Higher moisture content
 - Thicker aggregate veil
 - Aggregate moisture management
 - Warm mix can help

RAP – Process for size and consistency

Max size < NMAS</p>

Storage and Loading

- Follow normal best practices
- Warm Mix
 - Increase haul distance
 - Pave at cooler temperatures
 - Achieve density at lower temperatures
 - Extend paving season
 - Pave over crack sealer

Warm Mix

- Increase haul distance
- Pave at cooler temperatures
- Achieve density at lower temperatures
- Extend paving season
- Pave over crack sealer

Warm Mix

Construction – Paving Surface Preparation

Milling

- Remove defects
- Roughen surface
- Improve smoothness
- Provide RAP
- May eliminate need for tack
- Size machinery properly
- Tack
 - Emulsion or hot asphalt
 - Polymer emulsion or unmodified
 - Rate: 0.10 to 0.15 gal/sy (undiluted emulsion)

Construction - Paving Surface Preparation

Tack

- Emulsion or hot asphalt
- Polymer emulsion or unmodified
- Rate: 0.10 to 0.15 gal/sy (undiluted emulsion)

Construction - Paving Placement and Compaction

Paving

- Best to move continuously
- MTV or windrow can help
- Cooling can be an issue
 - 1" cools 2X faster than 1.5"
- Warm mix
- Compaction
 - Seal voids & increase stability
 - Low permeability
 - No vibratory on < 1"</p>

Construction - Paving Placement and Compaction

Ultra-Thin Bonded Overlay

Quality Control - Plant

Aggregate

- Gradation
- Moisture Content
- Mix Volumetrics
 - Air Voids
 - VMA
 - Asphalt Content
 - Gradation

Quality Control - Field

Field Density

- Thin-lift NDT gauges OK for > 1" mat
- Cores may not be representative
- Permeability not as big an issue
- Ride Quality
 - Depends on
 - Condition of existing pavement
 - Surface preparation
 - Overlay thickness
 - Specification should be based on existing condition

Performance

Immediate Benefits
Pavement Life
Economics

Immediate Benefits

- Labi et al. (2005)
 18 to 36% decrease in roughness
 5 to 55% decrease in rut depth
 1 to 10% improvement in condition rating
 Noise
 Corlevel ay and Mastin (2007): 6.7 dB reduction
 - Corley-Lay and Mastin (2007): 6.7 dB reduction on overlaid PCC

FHWA (2005): 5 dB reduction on overlaid PCC in Phoenix

■ 3dB reduction = $\frac{1}{2}$ traffic volume

Pavement Life

Location	Traffic	Underlying Pavement	Performance, yrs.
	High/Low	Asphalt	16
Ohio	Low	Composite	11
	High	Composite	7
North Carolina		Concrete	6 - 10
Ontario	High	Asphalt	8
Illinois	Low	Asphalt	7 – 10
New York		Asphalt	5 – 8
Indiana	Low	Asphalt	9 – 11
Austria	High/Low	Asphalt	<u>≥</u> 10
	High	Concrete	<u>></u> 8
Georgia	Low	Asphalt	10

F

Pavement Life

Location	Traffic	Underlying Pavement	Performance, yrs.
	High/Low	Asphalt	16
Ohio	Low	Composite	11
	High	Composite	7
North Carolina		Concrete	6 – 10
Ontario	High	Asphalt	8
Illinois	Low	Asphalt	7 – 10
New York		Asphalt	5 – 8
Indiana	Low	Asphalt	9 – 11
Austria	High/Low	Asphalt	<u>></u> 10
	High	Concrete	<u>></u> 8
Georgia	Low	Asphalt	10

F

Pavement Life

Location	Traffic	Underlying Pavement	Performance, yrs.
	High/Low	Asphalt	16
Ohio	Low	Composite	11
	High	Composite	7
North Carolina		Concrete	6 – 10
Ontario	High	Asphalt	8
Illinois	Low	Asphalt	7 – 10
New York		Asphalt	5 – 8
Indiana	Low	Asphalt	9 – 11
Austria	High/Low	Asphalt	<u>></u> 10
 Austria	High	Concrete	<u>></u> 8
Georgia	Low	Asphalt	10

Conclusions

Thin Overlays for Pavement Preservation Improve Ride Quality Reduce Distresses Maintain Road Geometrics Reduce Noise Reduce Life Cycle Costs Provide Long Lasting Service Place before extensive rehab required **Expected** performance 10 years or more on asphalt 6 to 10 years on PCC

Thin Asphalt Overlays

Thin asphalt overlays are a popular solution to pavement preservation. They are economical, long-lasting, and effective in treating a wide variety of surface distresses to restore ride quality, skid resistance, and overall performance.

Resources

- NCAT website: www.ncat.us
- New NAPA Publication:
 - IS-135, "Thin Asphalt Overlays for Pavement Preservation"
- Transportation Research Record:
 - Labi, et al. 2005.
- Ohio DOT:
 - Chou, et al. April 2008.

